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5-Unser: Image processing

5.1 PREPROCESSING

■Histogram 
■Normalization
■Combining images
■Spatial averaging (smoothing)
■Median filtering

3

5-Unser: Image processing

Graylevel histogram
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Input image: r[k] with k ⇤ � = {0, . . . ,K � 1}⇥ {0, . . . , L� 1}

Total number of pixels: #� = K ⇥ L

Discrete probability density function pr(r) =
Ng�1�

i=0

Pr(i)�(r � i)

Pr(i)

i

pr(r)

Graylevel distribution

Probability density function pr(r) with
� +⇥

�⇥
pr(r) dr = 1

Histogram

Quantized graylevels: {0, 1, 2, . . . , Ng � 1}

ni: number of pixels with graylevel i

Pr(i) =
ni

#�
: relative occurrence of graylevel i
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Examples of histograms
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Reading the histogram can tell us about

Dynamic range

Potential saturation problems

Average intensities of background and objects
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Normalization : Linear contrast adjustment
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a

min max

255

0

Full dynamic-range contrast stretching

⇥ = min{f} � =
255

max{f}�min{f}

Normalization

Average gray level Variance

µ =
1

#�

⇤

k��

f [k] ⇥2 =
1

#�

⇤

k��

(f [k]� µ)2

Normalized image statistics: T (f) = a

�
f � µ

⇥

⇥
+ b

Pointwise linear transformation: T (f) = ↵(f � �) with parameters ↵,� 2 R
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Local normalization
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a

Sliding window

aaaa

smoothing
filter -

+f

x2 smoothing
filter x

÷
g

Compensation of non-uniformities across the image field;  
e.g., shading, nonuniform background, changes in illumination

Smoothing filter implements a local averaging window � Estimation of local statistics

Normalization over a sliding window

g[k] = a

✓
f [k]� µ̃[k]

�̃[k]

◆
+ b

Weighted averaging: µ̃[k0] =
P

k w[k]f [k � k0] with
P

k w[k] = 1

Online IP demo         
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Combining images
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Averaging for noise reduction

Independent noisy observations: fi[k] = s[k] + ni[k] (i = 1, . . . , N)

Hypotheses

(a) E {fi[k]} = s[k, l] ) E {ni[k]} = 0

(b) i.i.d. noise at each location k ) Var {fi[k]} = Var {ni[k]} = �2[k]

Noise reduction: f̄ [k] =
1

N

NX

i=1

fi[k]

Mean: E
�
f̄ [k]

 
= s[k]

Variance: Var
�
f̄ [k]

 
=

1

N2

NX

i=1

Var {fi[k]} =
�2[k]

N

) Signal-to-noise ratio up by
p
N

Central-limit Theorem: f̄ [k] s Gauss
�
s[k],�2/N

�
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Example: noise reduction
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Correlation-aligned Herpes Simplex Type 2 Capsomers (electron micrographs)

Result of averaging:

Practical problems

Registration

Detection of outliers
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Spatial averaging: smoothing
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Linear smoothers = Lowpass filters ⇥ g = h � f with
�

k�Zd

h[k] = 1

Infinite impulse response (IIR)

Symmetric exponential

Gaussian filter

Finite impulse response (FIR)

Moving average
�

⇧⇧⇤

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

⇥

⌃⌃⌅

�

⇧⇧⇤

0 1
8 0

1
8

1
2

1
8

0 1
8 0

⇥

⌃⌃⌅

Limitations

Blurring of edges and image details
� nonlinear operators

Main uses

Image simplification

Noise reduction (high frequency)

Estimation of local statistics (mean, energy)

Multiscale processing
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Spatial averaging: median filter

11

Advantages

Tends to preserve contours better than linear smoothers

Good for impulsive or heavy-tailed (non-Gaussian) noise (robust estimation)

Input (200×200) 5×5 median filtered

g[k] = Median {f [k � i], i ⇥ W} W neighborhood:

Limitations

Computationally costly for large size of neighborhood

Breaks down when there is a majority of noisy pixels
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Impulsive noise reduction experiment
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Input: 200×200 Input + impulsive noise 3×3 median

5×5 median3×3 moving average 5×5 moving average
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5.2 MATCHING AND DETECTION
■Template matching
■Problem definition
■Correlation

■Matched-filter detection
■Application areas
■Object detection
■Automated inspection
■Data fusion
■Registration
■Motion compensation

13
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Template matching
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Problem definition

Reference pattern, target, or template(s): fr[k],k � �r

Test image: f [k],k � �f

Common support: � = �f ⇥ �r

How do we decide that f and fr are similar?

Given a collection of templates fi (e.g., shifted version of our reference),
how do we select the best match?
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Correlation measures
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Basic correlation (or `2(⌦)-inner product)

hf, fri`2 =
X

k2⌦

f [k] fr[k]

Relation with Euclidean distance

kf � frk2`2 = hf � fr, f � fri`2 = kfk2`2 + kfrk2`2 � 2 hfr, fi`2

Given a collection of templates with kfrk2 ⇡ const

kf � frk2 is minimum , hfr, fi is maximum
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Correlation measures (Cont’d)
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Centered correlation

Motivation: invariance to a constant intensity offset b with f = f0 + b
⇤
f � f̄ , fr � f̄r

⌅
�2

=
⇧

k��

�
f [k]� f̄

⇥ �
fr[k]� f̄r

⇥

where the average value is f̄ =
1

#�

⇧

k��

f [k]

Note:
⇤
f � f̄ , fr � f̄r

⌅
�2

=
⇤
f � f̄ , fr

⌅
�2

=
⇤
f, fr � f̄r

⌅
�2

Normalized correlation coefficient

Motivation: invariance to linear amplitude scaling f = a f0 + b

�1 � �{f, fr} =

�
f � f̄ , fr � f̄r

⇥
�2

⌃f � f̄⌃�2 ⌃fr � f̄r⌃�2

� 1

Schwarz inequality: ⌅f, g⇧ � ⌃f⌃ ⌃g⌃
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Matched-filter detection
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Correlation-like detector

g[k] = (h ⇤ f) [k]

=
X

k12Zd

h[k1] f [k � k1]

| {z }
convolution

=
X

k22Zd

w[k2] f [k + k2]

| {z }
correlation

where w[k] = h[�k]

Measurement model (signal + noise): f [k] = s[k � k0] + n[k]

s: known deterministic signal or template

n: additive white noise with zero mean and variance �2

k0: unknown signal location E {f [k]} = s[k � k0]
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Optimal matched filter
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Optimum detector: maximum SNR at k = k0

Solution: w[k] = s[k] (matched filter)

Proof:
Signal estimate at k = k0

E{g[k0]} =
X

k12Z
w[k1] s[k0 � k0 + k1] = hw, si`2

Residual-noise variance

Var{g[k]} =
X

k12Z
w2[k1] Var{n[k + k1]} = kwk2`2 �2

Signal-to-noise ratio at k = k0: SNR =
hs, wi`2
kwk`2 �

Cauchy-Schwarz inequality

hs, wi`2 6 ksk`2 kwk`2 with equality iff. w[k] = � s[k]
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Pattern detection by template matching
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f gmatched filter
h[k] = s[�k]

peak detector

Application

Line detector

5-Unser: Image processing

Template matching: example

20

Reference template (33� 31 pixels)

x = 98, y = 123, � = 88%

x = 149, y = 95, � = 100%

x = 58, y = 61, � = 33%
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Matched filtering: extension to colored noise
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-3 -2 -1 1 2 3

-0.4

-0.3

-0.2

-0.1

0.1

0.2

d2

dx2

�
1�
2 �

e�x2/2

⇥

x

H(ej!)
f h ⇤ f

|H(ej!)|2�f (e
j!)�f (e

j!)

Make the noise white and you are back to the previous problem!

Prewhitening filter:
1p

�n(ej!)

where �n(ej!) is the spectral power density of the noise

Prewhitened template: P (ej!) =
S(ej!)p
�n(ej!)

) Prewhitened matched filter: H(ej!) =
P

⇤(ej!)p
�n(ej!)

=
S
⇤(ej!)

�n(ej!)

Example

Detection of a Gaussian blob ' in isotropic 1/ k!k2 noise

Optimal detector (Mexican-hat filter)

�'(x)
F ! �k!k2 '̂(!)

Application: detection of µCA
++

in digital mammograms
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5.3 FEATURE EXTRACTION

■ Edge detection 
 
 

■ Edges: continuous formulation
■ Gradient-based edge detection  

■ Texture analysis
■ What is texture
■ Filterbank analysis
■ Towards texture segmentation

22

Edges are important clues for the interpretation of images; 
they are essential to object recognition
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Edges: continuous-domain formulation
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Edge point: location of abrupt change in an image

Edge

Image value at location x: f(x)

Normal vector: n =
�f(x)
⇥�f(x)⇥

� direction of maximum change

f(x)

d2f(x)
dx2

df(x)
dx

x

x

x

5-

Gradient and directional derivatives
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Direction of maximum deviation

�� = �(�f) = arctan(
f2

f1
) + k ⇥, k � Z (⇥ to edge)

Maximum of the directional derivative (Cauchy-Schwartz)

max
�

{Du�f} = Dnf = ⇤�f⇤ =
�

f2
1 + f2

2

f2

f1

��

Du�f

Generalization to d-dimensions: derivative of f along the vector u

Duf(x) = lim
✏!0

✓
f(x+ ✏u)� f(x)

✏ kuk

◆
=

⌧
u

kuk ,rf(x)

�

Taylor-series argument :
f(x+ ✏u) =

f(x) + ✏uTrf(x) +O(✏2)

Gradient of f at x = (x1, x2): rf(x) =
⇣

@f(x)
@x1

, @f(x)
@x2

⌘
= (f1(x), f2(x))

Directional derivative of f along the unit vector u✓ = (cos ✓, sin ✓)

Du✓f(x) = lim
✏!0

f(x+ ✏u✓)� f(x)

✏

= f1(x) cos ✓ + f2(x) sin ✓
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General criteria for edge detection
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� Multiscale approaches

Remarks

Gradient magnitude and Laplacian are rotationally invariant while
gradient vectors and directional second-order derivatives are not

Maximum of the gradient

Zero-crossings of the second-order (directional) derivative

Combination of both

Derivatives are usually estimated on a smoothed version of the image to improve
robustness and/or reduce the effect of noise or irrelevant details
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Gradient-based edge detection
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Discretized gradient operators

Horizontal derivative: g1[k] = (h1 � f) [k]

Vertical derivative: g2[k] = (h2 � f) [k]

g[k1, k2] =
�

g2
1 [k1, k2] + g2

2 [k1, k2]

�g[k1, k2] = arctan(
g2[k1, k2]
g1[k1, k2]

) + n ⇥, n ⇥ Z

Threshold-based edge detection

edge[k1, k2] =

�
1 g[k1, k2] � T1

0 otherwise

1
2 � 1

20

1
2

0

� 1
2

Centered finite differences

@x ⇡

@y ⇡
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Canny’s edge detection algorithm
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f
g2

g1

�

h1 �
g2
1 + g2

2
h2

Non-maxima

suppression
Threshold

�g� edge map

arctan(g2/g1)

Refinements

Non-maxima suppression: based on local search in the direction �g

Hysteresis threshold: contour segments above T1 (high threshold) are grown
such as to include all connected points with g[k1, k2] � T0 (low threshold)

Online IP demo         
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What is texture ?
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Notation: x[k], k � � (texture region)

What is meant by texture
• Local order or pattern
• Neighborhood property
• Invariance by translation
• Homogeneity
• Subjective notion related to 

visual perception



5-Unser: Image processing

Gaussian texture model
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where ax[k] = E{x[·]x[·+ k]} (autocorrelation)

Power spectral density function

�x(e
j!) =

X

k2Z2

ax[k]e
�jhk,!i (Wiener-Khintchine relation)

LSI system

x[k] = (h ⇤ n)[k]  ! �x(ej!) = |H(ej!)|2 · �n(ej!)

Gaussian texture generation model

2D stationary 
process

Gaussian 
white noise

H(ej!) =
p
�x(ej!)

�x(ej!)�n(ej!) = 1
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Filterbank analysis
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Hi(�)

h1

h2

hN

y2

y1

yN

x
...

Multichannel filterbank

yi[k] = (hi � x)[k], i = 1, . . . , N

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

⇥

2�
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Filterbank analysis (Cont’d)
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Spatial estimators over a texture region �

P̂i(a) =
1

#�

�

k⇥�

�yi[k]�a

m̂i,p =
1

#�

�

k⇥�

|yi[k]|p

Channel statistics

Histograms: Pi(a) = Prob{yi = a}

Moments: mi,p = E {|yi|p} =
X

a

|a|pPi(a)

Texture energies: �2
i = Var{yi} =

(
m1,2 � µ2, i = 1 (lowpass)

mi,2, i 6= 1 (highpass)
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Pratical issues
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Filter masks for the 3x3 DCT

(Unser 1986)

(Unser 1995)

Choice of the filterbank

Local linear transforms

) Sliding 3⇥ 3 DCT or DST

Motivation: fast algorithms, good approximation of KLT

(Fogel 1989)Gabor filters

Motivation: similarity with visual system

Wavelet filterbanks (with or without decimation)

Motivation: fast algorithm; multiscale analysis

Convolutional neural networks

Motivation: the “learning revolution” = data-driven design
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Texture classification
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5-Unser: Image processing

Texture-classification results

34

Test data

12 Brodatz textures

Equalized histograms (32 levels)

(32� 32) non-overlapping regions

Training and classification

Maximum-likelihood estimation of

(mi,Ci) for i � {1, . . . ,K}

Leave-one-out method

Confusion matrix (line: true class; column: assigned class)
1 2 3 4 5 6 7 8 9 10 11 12

1 64 0 0 0 0 0 0 0 0 0 0 0

2 0 64 0 0 0 0 0 0 0 0 0 0

3 0 0 64 0 0 0 0 0 0 0 0 0

4 0 0 0 64 0 0 0 0 0 0 0 0

5 0 0 0 0 64 0 0 0 0 0 0 0

6 0 0 0 0 0 64 0 0 0 0 0 0

7 0 0 0 0 0 0 62 0 0 0 0 2

8 0 0 0 0 0 0 0 64 0 0 0 0

9 0 0 0 0 0 0 0 0 64 0 0 0

10 0 0 0 0 0 0 0 0 0 64 0 0

11 0 0 0 0 0 0 0 1 0 0 63 0

12 0 0 0 0 0 0 5 0 0 1 0 58

Number of features: 9 texture energies (3x3 DCT)

Number of errors: 9 out of 768

Total score: 98.83%
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Towards texture segmentation
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h2
y2

y1

yN

f [k]

x[k]
smoothing

filter

smoothing
filterh1

smoothing
filterhN Lo

ca
l f

ea
tu

re
 M

ap

...
...

Basic principle

Define a local feature map f [k] associated to a window centered on current pixel

Efficient multichannel implementation

Smoothing filter implementing a
local-averaging window

) Estimation of local statistics (moments)

Gaussian smoother
- isotropic weighting window
- optimal space/frequency localization

Additional processing steps

Feature reduction; e.g., Karhunen-Loève transform

Classification or clustering

|y|p

|y|p

|y|p

5-Unser: Image processing

Example of filterbank analysis
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H1

H2

HN

G𝜎
G𝜎

G𝜎

 Feature M
ap

 N filters

DCT filters (3x3)

Outputs of filterbank:

Feature map (after Gaussian smoothing):

abs Smoothing K-means clustering

(pixelwise)
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5.4 IMAGE SEGMENTATION
■Segmentation: art or science?
■Amplitude thresholding
■Variational thresholding
■Statistical thresholding

■Binary segmentation techniques

37
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Segmentation problem

38

�

�0

�0

�2

�1

Image f [k], with k � �Definition

Image segmentation: Find a partition of the support � of the image f , with

� =
�

i

�i with �i ⇤ �j = ⇥ for i �= j

such that the regions �i satisfy some
homogeneity (and connectivity) criterion.

Three main approaches

- Pixel classification

- Region-based segmentation

- Boundary-based segmentation� Edge detection

The total number of regions I is not necessarily known



5-Unser: Image processing

Segmentation: art or science?

39

Problem: lack of a universal definition of homogeneity
➩ many application-specific approaches

■ Approaches for specifying homogeneity
■ Empirical (e.g., similar graylevels; feature maps)
■ Statistical, based on some a priori model  

(e.g., constant mean + additive white noise)

■ Approaches for enforcing connectivity (if required)
■ Prior information about object size or shape
■ Joint probability model for class labels
■ Contour length

5-Unser: Image processing

Segmentation as an optimization problem
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Criterion = Data term + Regularization term

homogeneity connectivity

Variational vs. Markov-random-field approaches
 
Principle: maximize the quality of any candidate segmentation, 
as measured by a functional that incorporates all  
problem-specific knowledge
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Amplitude thresholding
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T1

Empirical approach

Based on the histogram, select a collection of thresholds

T0 < · · · < Ti < · · · < TI

and use the following rule to assign regions:

(k, l) ⇥ �i for Ti � f [k, l] < Ti+1

5-Unser: Image processing

Variational thresholding
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Simple iterative two-step optimization scheme

1. Given �i, compute region means µi

2. Given µi, compute optimal partitions �1, . . . ,�I � Ti+1 = 1
2 (µi + µi+1)

Note: all computations can be done from the histogram

Principle: minimize an appropriate goodness-of-fit criterion

Variational formulation

Constant-mean model: f [k] = µi, k 2 ⌦i

Find µi and ⌦i s. t.
X

i

X

k2⌦i

(f [k]� µi)
2 is minimum

) Same problem as Max-Lloyd quantization (K-means)
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Segmentation by minimum-error quantization
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Search for the “optimal” threshold  to segment images

Minimum-error solution:      K=2                               K=4

(see Chap 2)
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Statistical thresholding
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Principle: Find the most “likely” segmentation model

f : ⌦ ! RN (scalar=graylevel, RGB or feature map)

Statistical formulation with labels x[k] = i , k 2 ⌦i

Standard “statistics" notation

X = {x[k] : k 2 ⌦}: unknown labels

Y = {f [k] : k 2 ⌦}: observed data = image or feature map to segment

=
1

(�
p
2⇡)N

exp(�kf � µik2

2�2
)

Class-conditional probability at location k, assuming i.i.d. Gaussian feature channels

p(f |x = i) =
NY

n=1

1

�
p
2⇡

exp(� (fn � µi,n)2

2�2
)

Feature vector: f = f [k] = (fn) 2 RN

Parameters: � 2 R, µ1, . . . ,µI 2 RN



5-Unser: Image processing

Statistical thresholding (Cont’d)
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Maximum-likelihood estimate

Find x[k] and µ1, . . . ,µI 2 RN such that

�
X

k2⌦

kf [k]� µx[k]k2 = �
X

i

X

k2⌦i

kf [k]� µik2 is maximum

) Equivalent to minimum-error vector (Max-Lloyd) quantization (I-means)

Region labels: x[k] = i , k 2 ⌦i

Joint probability density function (i.i.d. Gaussian components)

p(Y |X;µ1, . . . ,µI ,�) /
Y

k2⌦

exp(�
kf [k]� µx[k]k2

2�2
)

Log-likelihood

log p(Y |X;µ1, . . . ,µI ,�) = C0 +
X

k2⌦

�
kf [k]� µx[k]k2

2�2
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Texture segmentation by vector quantization
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H1

H2

HN

G𝜎
G𝜎

G𝜎

 Feature M
ap

filters

Outputs of filterbank (3x3 DCT)

Feature map (after Gaussian smoothing):

abs Smoothing K-means clustering

(pixelwise)


(see Section 5.3)
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Binary-segmentation techniques
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Objects or regions: set of points in Z2 (bitmap)

Distance measures with a, b ⇤ Z2

City-block distance: D4(a, b) = |a1 � b1| + |a2 � b2|

Chessboard distance: D8(a, b) = max(|a1 � b1| , |a2 � b2|)

distance⇥ �-neighborhood N(a) of a point a (with D(a, b) � �)

Connectivity

4-connect neighborhood

N4(a) = {b| b � Z2, D4(a, b) � 1}

8-connect neighborhood

N8(a) = {b| b � Z2, D8(a, b) � 1}

5-Unser: Image processing

Binary-segmentation techniques (Cont’d)
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Objects or regions: set of points in Z2 (bitmap)

Path

List {ai : i � [1 . . . N ]} of N connected pixels such that ai � N(ai�1)

Connected components

Maximum set of connected pixels



5-Unser: Image processing

Binary-segmentation techniques (Cont’d)
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B

B
C

C

In 3-D: 6-connected vs. 18-connected vs. 26-connected

Solution

8-connectivity for foreground

4-connectivity for backgroud

OR

4-connectivity for foreground

8-connectivity for backgroud

Background/foreground connectivity ambiguity
B and C are separated by an 8-connected contour; yet they are themselves 8-connected
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Connected-component labeling
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kU

kL k

Connected-component labeling (blob coloring algorithm)

F: foreground Z2 = F ⇤ B; F ⌅ B = ⇥

B: background 4-connected scanning window:

Start with color equivalences E = ⇥ and initial color i = 1

Scan image from left to right, then top to bottom

if k � F then {

if (kU � B ⇧ kL � B) then {color(k) = i; E = E⇤{(i, i)}; i = i+1;}

if (kU � F ⇧ kL � B) then color(k) = color(kU );

if (kU � B ⇧ kL � F) then color(k) = color(kL);

if (kU � F ⇧ kL � F) then {

color(k) = color(kL); E = E ⇤ {(color(kU ), color(kL))};}

}
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Blob coloring (Cont’d)
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Main applications

Finding image regions following an edge detection

Counting objets (cytology)

Modification for region growing: k,kU ⇤ F⇥ |f(k)� f(kU )| < T

E = {(1, 1), (2, 2), (3, 3), (1, 3), (4, 4), (4, 1), (5, 5), (6, 6), (5, 6)}

Graph representation of color-equivalence list

1

3
(1,3)

4

(4,1)
2

6

5

(5,6)

Post-processing: Resolve color equivalences

For j = 1 to i do {

U = getEquivalentColors(j, E); ⇥u � U : equivalenceTable[u] = j;}

For all pixels k set color(k) = equivalenceTable[color(k)];


