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Image Processing

Chapter 5

Image Processing Tasks
Prof. Michael Unser, LIB

November 2023
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= 5.4 Segmentation
Variational thresholding
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5.1 PREPROCESSING

= Histogram

= Normalization

= Combining images

= Spatial averaging (smoothing)
= Median filtering

Unser: Image processing 5-3

Graylevel histogram
Inputimage: r[k] with keQ={0,...,K —1} x{0,...,L —1}
Total number of pixels: # = K x L

m Graylevel distribution

+oo
Probability density function p,.(r) with / pr(r)dr =1

m Histogram
, pr(r)
Quantized graylevels: {0,1,2,..., N, — 1}
P (1)
n;: number of pixels with graylevel 7
P.(i) = n_;z relative occurrence of graylevel i I I I I ;
Ny—1
m Discrete probability density function pr(r) = > Pu(i)d(r — i)
i=0
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Examples of histograms

m Reading the histogram can tell us about

= Dynamic range
s Potential saturation problems

= Average intensities of background and objects

Unser: Image processing 5-5

Normalization : Linear contrast adjustment

Pointwise linear transformation: T'(f) = «a(f — 8) with parameters o, f € R

A

255

m Full dynamic-range contrast stretching

255
max{f} — min{f}

f=min{f} o=

min max

m Normalization
Average gray level Variance
1 o 1 9

Normalized image statistics:  7'(f) = a (f — M) +b
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Local normalization

Compensation of non-uniformities across the image field;
e.g., shading, nonuniform background, changes in illumination

Sliding window
m Normalization over a sliding window r

PR CETCAR

Weighted averaging: filko] = >, w(k]f[k — ko]  with >, wk]=1

* 9

smoothing l > + —»
filter - I -

¥ L smﬁlct)g:ing o JX Online IP demo

Y

Smoothing filter implements a local averaging window =-  Estimation of local statistics

Unser: Image processing

Combining images

m Averaging for noise reduction

m Independent noisy observations:  f;[k] = s[k| + n;[k] (t=1,...,N)

m Hypotheses

(@ E{filk]} = skl = E{nik]} =0
(b) i.i.d. noise at each location k = Var {fi[k]} = Var {n;[k]} = 0?[K]

N
= Noise reduction:  f[k] = %Zfi[k:]
i=1

Mean: E { f[k]} = s[k]

= LS o’k
Variance: Var { fk]} = el ZVar {filk]} = N

= Signal-to-noise ratio up by v N
Central-limit Theorem:  f[k] ~ Gauss (s[k],o?/N)

Unser: Image processing



Example: noise reduction

Correlation-aligned Herpes Simplex Type 2 Capsomers (electron micrographs)

Result of averaging:

Practical problems
= Registration

= Detection of outliers

Unser: Image processing 5-9
Spatial averaging: smoothing
Linear smoothers = Lowpass filters & g=hxf with > hlk]=1
kezd
m Finite impulse response (FIR) m Infinite impulse response (IIR)

Moving average

=)

O~ O~ O~
Ol—= ©Ol—= Ol
O ol

m Main uses
= Image simplification

= Noise reduction (high frequency)

= Symmetric exponential

@)

= Gaussian filter

O ool

m Limitations

= Blurring of edges and image details
= nonlinear operators

= Estimation of local statistics (mean, energy)

= Multiscale processing

Unser: Image processing



Spatial averaging: median filter

glk] = Median { f[k — i],i € W} W neighborhood: H

Input (200x200) 5x5 median filtered
m Advantages

= Tends to preserve contours better than linear smoothers

= Good for impulsive or heavy-tailed (non-Gaussian) noise (robust estimation)

m Limitations

= Computationally costly for large size of neighborhood
= Breaks down when there is a majority of noisy pixels
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Impulsive noise reduction experiment
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5.2 MATCHING AND DETECTION

= Template matching
Problem definition
Correlation

= Matched-filter detection

= Application areas
Object detection
Automated inspection
Data fusion
Registration
Motion compensation
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Template matching

= Problem definition

Reference pattern, target, or template(s): f,[k|, k € Q,
Testimage: f[k], k € (¢

Common support: 2 = QN €,

How do we decide that f and f,. are similar?

Given a collection of templates f; (e.g., shifted version of our reference),
how do we select the best match?

Unser: Image processing 5-14



Correlation measures

= Basic correlation (or ¢5(€2)-inner product)

ey =D fIK] frlke

ke

Relation with Euclidean distance
2 2 2
||f - fv’“gQ = <f - fraf - fr)gQ = Hf”g2 + ||fr||52 — 2 <fr7f>g2

Given a collection of templates with || f,.||* ~ const

|f — fr-||? is minimum < (f,, f) is maximum
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Correlation measures (Cont’d)

= Centered correlation

Motivation: invariance to a constant intensity offset b with f = fy 4+ b

<f - f»fr - fr>62 = Z (f[k] - f) (fr[k] - fr)

kcQ

where the average value is f = Z flk
LR yer

Note: <f — fT, fr - f_r>£2 = <f_ fa f7“>£2 - <f7f?" - f?">g2

= Normalized correlation coefficient

Motivation: invariance to linear amplitude scaling f = a fo + b
(f=Ffo= P

1 = Fllea 1 fr = Frlles

Schwarz inequality: (f, g) < ||f] |lgll

Unser: Image processing 5-16



Matched-filter detection

= Measurement model (signal + noise): f[k] = s[k — ko] + n[k]

s: known deterministic signal or template
n: additive white noise with zero mean and variance o2

ko: unknown signal location E{f[k]} = s[k — ko]

m Correlation-like detector
glk] = (hxf)[K]

= Y hlkiflk—ki] = > wiks] flk + ko]

k1 €74 kgEZd
N ~~ d ~ ~~

convolution correlation
where wlk] = h|—k]

7

Unser: Image processing 5-17

Optimal matched filter

m Optimum detector: maximum SNR at k = kg

Solution: w(k] = s[k] (matched filter)

Proof:
Signal estimate at k = kg

E{glkol} = Z wlk1] s[ko — ko + k1] = (w, 5),,

k1 E€Z
Residual-noise variance

Var{glk]} = Y w’[ki] Var{n[k + k1]} = [[wlly, o®
ki1 €Z

<87 w>£2

Signal-to-noise ratio at k = ky: SNR =
lwll,, o

Cauchy-Schwarz inequality

(s,w),, < |lsll,, wll,,  with equality iff. w[k] = A s[k]

Unser: Image processing 5-18



Pattern detection by template matching

f matched filter g

—_—

peak detector ——

A4

hlk] = s[—K]
m Application Template Matching with a
3*3 kernel
Line detector et _T
eeeeeeee
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Template matching: example

Reference template (33 x 31 pixels) 3]

x =149,y = 95, p = 100%

x =98,y =123, p = 8%

x =58,y =61, p=33%
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Matched filtering: extension to colored noise

Make the noise white and you are back to the previous problem!

hx* f
1 jw
= Prewhitening filter: ———— — H(*)— ) .
P, (el) Os(e") [ H (") [7® s (")
where ®,,(e)*’) is the spectral power density of the noise
, S (elw
= Prewhitened template: P(e'“) = (e .)
,, (elw)
: P*(el* S* (el
= Prewhitened matched filter: H(e/*) = ( .) = ()
D, () DPy(e)
m Example
Detection of ian blob ¢ in i ic 1 % noi KIS
etection of a Gaussian blob ¢ in isotropic 1/ ||w]|” noise i (m : )
Optimal detector (Mexican-hat filter) o1
F 2 . 3 -2 2 31
Ap(x) +— —[wl” ¢(w)
Application: detection of uCA™ ™ in digital mammograms
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5.3 FEATURE EXTRACTION

= Edge detection

Edges are important clues for the interpretation of images;
they are essential to object recognition

Edges: continuous formulation
Gradient-based edge detection

= Texture analysis
What is texture
Filterbank analysis
Towards texture segmentation

Unser: Image processing 5-22



Edges: continuous-domain formulation

= Edge point: location of abrupt change in an image

()
Tz
 df(2) | Edge
dx ;
/\ Image value at location x:  f(x)
E T Normal vector: n = Vf( )
) | IV f(=)ll
, 47 (@) | . .
dz2 ! = direction of maximum change
: P
Unser: Image processing 5-23

Gradient and directional derivatives
m Gradientof f atx = (z1,22): Vf(x)= (%f—g), %(f)) = (fi(z), fa(x))
m Directional derivative of f along the unit vector uyp = (cos 8, sin 0)

Dy fla)  lim @+ eu0) — (@)

e—0 €

Taylor-series argument :
‘ f(x+eu) =
= fi(z) cosf + fao(z) sinf f(@) + euTV f(z) + O(e?)

m Generalization to d-dimensions: derivative of f along the vector u

D.f(@) = 1y (FEEEEL) - <||u|| ()>

= Maximum of the directional derivative (Cauchy-Schwartz)
max{Dy, f} = Duf = |V fI| = \/ 2 + £

m Direction of maximum deviation

0" =Z(Vf)= arctan(jz )+km keZ (Ltoedge)
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General criteria for edge detection

= Maximum of the gradient

m Zero-crossings of the second-order (directional) derivative

m Combination of both

m Remarks

= Gradient magnitude and Laplacian are rotationally invariant while
gradient vectors and directional second-order derivatives are not

= Derivatives are usually estimated on a smoothed version of the image to improve
robustness and/or reduce the effect of noise or irrelevant details

= Multiscale approaches

Gradient-based edge detection

= Discretized gradient operators Centered finite differences
Horizontal derivative: g1 [k] = (hy * f) [k] 0.~ 210 -2
x 2 2
Vertical derivative: ga[k] = (ho * f) [K] .
2
glk1, ko) = \/gilk1, ko] + g3lk1, ko 5 ~ [0
y ~~
g2[k1, k2 1
0,\k1, ko] = arctan(—F—— Z —3
glk1, ko] = arc an(gl[k17k2])+n7r,ne 5

= Threshold-based edge detection

1 g[k].a kQ] > T]‘
edgelky, ko] = { 0 otherwise

Unser: Image processing
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Canny’s edge detection algorithm

= Refinements

f

= Non-maxima suppression: based on local search in the direction 0,

= Hysteresis threshold: contour segments above 77 (high threshold) are grown
such as to include all connected points with g[k1, k2] > Tj (low threshold)

g1
hy > - |lgll| Non-maxima Threshols edge map
> > ——>
ha g2 91+ 93 suppression resho
I -
arctan(gs/g1) Online IP demo

5-27

What is texture ?

What is meant by texture

Unser: Image processing

Local order or pattern
Neighborhood property
Invariance by translation
Homogeneity

Subjective notion related to
visual perception

Notation: z|k|, k € () (texture region)
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Gaussian texture model
m Power spectral density function

P, () = Z a[k]e™ ke (Wiener-Khintchine relation)
kez?

where a.[k] = E{z[|z[- + k|} (autocorrelation)

m LS| system

vlk] = (hxn)lk] = Qu(el?) = [H(}*)]* - Dy (&)

m Gaussian texture generation model

. Gaussian 2D stationary
L% white noise process
i — > H(e¥) = /D, (6]¥) —
= D, () =1 D, (c1)
Unser: Image processing 5-29

Filterbank analysis

m Multichannel filterbank

yilk] = (hix 2)k), i=1,..., N .,

— 2 —>
x—
H;(w)
1.0F - - --
\ — v —> v
0.8F ]
0.6F ]
0.4[ \
0.2[ ]
0.0k . : . ]
0.0 0.1 0.2 0.3 0.4 0.5 w
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Filterbank analysis (Cont’d)

m Channel statistics
Histograms: P;(a) = Prob{y; = a}
Moments:  m;, =E{|yil"} = > _|al’P(a)

mio — w?, i=1 (lowpass)

Texture energies: 02 = Var{y;} =
) ’ tvid { mi,2, i # 1 (highpass)

m Spatial estimators over a texture region {2

A 1
Pi(a) = 0 > Syika

kcQ

1
Mip = 70 Z |y k]|

kcQ
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Pratical issues

m Choice of the filterbank . I
= Local linear transforms (Unser 1986) ' I
= Sliding 3 x 3 DCT or DST -
Motivation: fast algorithms, good approximation of KLT E { c.

Filter masks for the 3x3 DCT

= Gabor filters (Fogel 1989)

Motivation: similarity with visual system

= Wavelet filterbanks (with or without decimation)  (Unser 1995)

Motivation: fast algorithm; multiscale analysis

= Convolutional neural networks

Motivation: the “learning revolution” = data-driven design

Unser: Image processing 5-32
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Texture-classification results

m Test data m Training and classification
= 12 Brodatz textures = Maximum-likelihood estimation of
=« Equalized histograms (32 levels) (m;, C;) fori e {1,..., K}
= (32 x 32) non-overlapping regions = Leave-one-out method

m Confusion matrix (line: true class; column: assigned class)

1 2 3 4 5 6 7 8 9 10 11 12
1 64 0 0 0 0 0 0 0 0 0 0 0
2 0 64 0 0 0 0 0 0 0 0 0 0
3 0 0 64 0 0 0 0 0 0 0 0 0
4 0 0 0 64 0 0 0 0 0 0 0 0
5 0 0 0 0 64 0 0 0 0 0 0 0
6 0 0 0 0 0 64 0 0 0 0 0 0
7 0 0 0 0 0 0 62 0 0 0 0 2
8 0 0 0 0 0 0 0 64 0 0 0 0
9 0 0 0 0 0 0 0 0 64 0 0 0
10 0 0 0 0 0 0 0 0 0 64 0 0
11 0 0 0 0 0 0 0 1 0 0 63 0
12 0 0 0 0 0 0 5 0 0 1 0 58

Number of features: 9 texture energies (3x3 DCT)
Number of errors: 9 out of 768
Total score: 98.83%

Unser: Image processing 5-34



Towards texture segmentation

m Basic principle

Define a local feature map f[k] associated to a window centered on current pixel

m Efficient multichannel implementation

=
=

Smoothing filter implementing a
local-averaging window

I
=3
'\S

Local feature Map

<

i

= Estimation of local statistics (moments)

I
Ny
N\

Gaussian smoother z|k|

- isotropic weighting window
- optimal space/frequency localization

I
>
=

m Additional processing steps

= Feature reduction; e.g., Karhunen-Loeve transform

= Classification or clustering

Unser: Image processing 5-35

Example of filterbank analysis
DCT filters (3x3)

Outputs of filterbank:

Feature map (after Gaussian smoothlng

N filters abs  Smoothing K-means clustering
(pixelwise)

Unser: Image processing 5-36



5.4 IMAGE SEGMENTATION

= Segmentation: art or science?

= Amplitude thresholding
Variational thresholding
Statistical thresholding

= Binary segmentation techniques

Unser: Image processing 5-37

Segmentation problem

m Definition Image f[k], with k €

Image segmentation: Find a partition of the support €2 of the image f, with

such that the regions (2; satisfy some

Q
homogeneity (and connectivity) criterion. \@
Qo

The total number of regions I is not necessarily known

m Three main approaches

- Pixel classification
- Region-based segmentation
- Boundary-based segmentation = Edge detection

5-38
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Segmentation: art or science?

Problem: lack of a universal definition of homogeneity
=> many application-specific approaches

= Approaches for specifying homogeneity
Empirical (e.g., similar graylevels; feature maps)
Statistical, based on some a priori model
(e.g., constant mean + additive white noise)

= Approaches for enforcing connectivity (if required)
Prior information about object size or shape
Joint probability model for class labels
Contour length

5-39
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Segmentation as an optimization problem

Variational vs. Markov-random-field approaches

Principle: maximize the quality of any candidate segmentation,
as measured by a functional that incorporates all
problem-specific knowledge

Criterion = Data term + Regularization term

[\

(o)

Unser: Image processing 5-40



Amplitude thresholding

m Empirical approach

Based on the histogram, select a collection of thresholds
TO<"'<Tz'<"'<TI
and use the following rule to assign regions:

(kﬁ, l) € Qz fOI’T% < f[k?,l] < Ti—i—l

b

Ty

Unser: Image processing

Variational thresholding

Principle: minimize an appropriate goodness-of-fit criterion

m Variational formulation

Constant-mean model: f[k] = u;, k € €,

Find u; and €2; s. t. Z Z (flk] — p)*  is minimum
i ke,

= Same problem as Max-Lloyd quantization (/-means)

Simple iterative two-step optimization scheme
ﬁ 1. Given (2;, compute region means y;
J 2. Given p;, compute optimal partitions €21, ...,Q; = T;41 = % (i + thig1)
Note: all computations can be done from the histogram

Unser: Image processing
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Segmentation by minimum-error quantization

Search for the “optimal” threshold to segment images

(see Chap 2)

Minimum-error solution: K=2 =4

Unser: Image processing 5-43

Statistical thresholding

Principle: Find the most “likely” segmentation model

m Statistical formulation with labels z[k] = i < k €

Standard “statistics" notation

X = {z[k| : k € Q}: unknown labels

Y = {f[k] : k € Q}: observed data = image or feature map to segment

f : Q — RY (scalar=graylevel, RGB or feature map)

s Class-conditional probability at location k, assuming i.i.d. Gaussian feature channels

N )2 1 — |2
rifle=n=11 o—\}% (- 2:2%“) ) = ovany eXp(_Hfzo—gZH

Feature vector: f = flk] = (f,) € RY

)

n=1

Parameters: 0 € R, ptq,...,pu; € RY

Unser: Image processing 5-44



Statistical thresholding (Cont’d)

= Region labels:  z[k] =i < k € Q)

= Joint probability density function (i.i.d. Gaussian components)

FIR] = o |7
p(Y|X;IJ'17"'7lJ'Ia X He 20-2$[] )
keQ
Log-likelihood
I FIK] = tom |12
logp(Y| X;pay,...,pp,0) = Co +,§2 53

= Maximum-likelihood estimate
Find z[k] and p, ..., u; € RY such that

S TFR = pal? = =30 T NI £1K] — i) is maximum

keQ i keQ;

= Equivalent to minimum-error vector (Max-Lloyd) quantization (/-means)

5-45
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Texture segmentation by vector quantization
(see Section 5.3)

Outputs of filterbank (3x3 DCT)

K-means clustering

filters abs Smoothing
(pixelwise)

-8
-

dejy ainyesy
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Binary-segmentation techniques

Objects or regions: set of points in Z? (bitmap)

= Distance measures with a, b € Z?
City-block distance: Dy(a,b) = |a; — b1| + |az — ba|
Chessboard distance: Dg(a,b) = max(|a; — b1], |az — b2])
distance = e-neighborhood N (a) of a point a (with D(a, b) < €)

= Connectivity

4-connect neighborhood —

Ni(a) = {b|b € Z2, Dy(a,b) < 1}

8-connect neighborhood

Ns(a) = {b|b € Z2, Ds(a,b) < 1}

Unser: Image processing 5-47

Binary-segmentation techniques (Cont’d)

Objects or regions: set of points in Z2 (bitmap)

= Path
List {a; : ¢ € [1... N]} of N connected pixels such that a; € N(a;_1)

= Connected components

Maximum set of connected pixels

Unser: Image processing 5-48



Binary-segmentation techniques (Cont’d)

Background/foreground connectivity ambiguity

B and C are separated by an 8-connected contour; yet they are themselves 8-connected

Solution | | C
B

8-connectivity for foreground

4-connectivity for backgroud | |

OR
4-connectivity for foreground | | |C
B
8-connectivity for backgroud ] N
In 3-D: 6-connected vs. 18-connected vs. 26-connected
Unser: Image processing
Connected-component labeling
m Connected-component labeling (blob coloring algorithm)
[F: foreground [ ] 7> =FUB;FNB =10 -
U
B: background [ 4-connected scanning window: kil k

Start with color equivalences E = () and initial color i = 1

Scan image from left to right, then top to bottom

if k€F then {
it (ky € BAkp € B) then {color(k)=i; E=EU{(i,i)}; i=i+1;} g
if (kv € FA kL € B) then color(k) = color(ky);

( )
if (ky € BAKkL € F) then color(k) = color(kr);
( )

if (ky e FAkr € F) then {

muslun

color(k) = color(kr); E=EU{(color(ky), color(kr))};}

}

Unser: Image processing
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Blob coloring (Cont’d)

m Post-processing: Resolve color equivalences

For j=1 to ¢ do {

U = getEquivalentColors(j,E); Yu € U: equivalenceTable[u] = j;}

For all pixels k set color(k) = equivalenceTable[color(k)|;

(13)

E={(1,1),(2,2),(3,3),(1,3),(4,4),(4,1),(5,5), (6,6), (5,6)} ; oo | o
(4,1 [ ]

m Main applications 4 6

= Finding image regions following an edge detection
= Counting objets (cytology)

= Modification for region growing: k,ky € F < |f(k) — f(ky)| < T
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