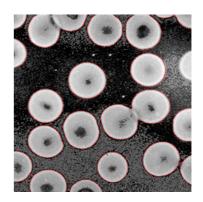


Image Processing

Chapter 5

Image Processing Tasks

Prof. Michael Unser, LIB



November 2023

CONTENT

5.1 Preprocessing

- Histogram
- Normalization
- Combining images
- Spatial averaging

5.2 Matching and detection

- Correlation
- Matched filtering

5.3 Feature extraction

- Contour detection
- Texture analysis

5.4 Segmentation

- Variational thresholding
- Connected component labelling

5.1 PREPROCESSING

- Histogram
- Normalization
- Combining images
- Spatial averaging (smoothing)
- Median filtering

Unser: Image processing 5-3

Graylevel histogram

Input image: $r[{\pmb k}]$ with ${\pmb k} \in \Omega = \{0,\dots,K-1\} \times \{0,\dots,L-1\}$

Total number of pixels: $\#\Omega = K \times L$

Graylevel distribution

Probability density function $p_r(r)$ with $\int_{-\infty}^{+\infty} p_r(r) \, \mathrm{d}r = 1$

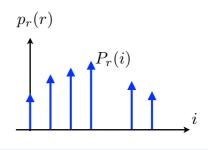
Histogram

Quantized graylevels: $\{0,1,2,\ldots,N_g-1\}$

 n_i : number of pixels with graylevel i

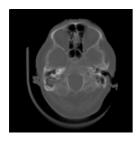
 $P_r(i) = \frac{n_i}{\#\Omega}$: relative occurrence of graylevel i

Discrete probability density function

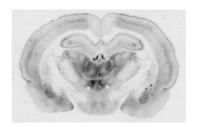


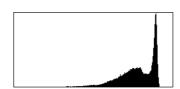
$$p_r(r) = \sum_{i=0}^{N_g - 1} P_r(i)\delta(r - i)$$

Examples of histograms









- Reading the histogram can tell us about
 - Dynamic range
 - Potential saturation problems
 - Average intensities of background and objects

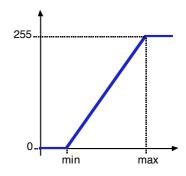
Unser: Image processing 5-5

Normalization: Linear contrast adjustment

Pointwise linear transformation: $T(f) = \alpha(f-\beta)$ with parameters $\alpha, \beta \in \mathbb{R}$

■ Full dynamic-range contrast stretching

$$\beta = \min\{f\} \qquad \alpha = \frac{255}{\max\{f\} - \min\{f\}}$$



Normalization

Average gray level

$$\mu = \frac{1}{\#\Omega} \sum_{\boldsymbol{k} \in \Omega} f[\boldsymbol{k}]$$

Variance

$$\sigma^2 = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} \left(f[\mathbf{k}] - \mu \right)^2$$

Normalized image statistics:

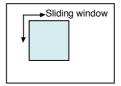
$$T(f) = a\left(\frac{f-\mu}{\sigma}\right) + b$$

Local normalization

Compensation of non-uniformities across the image field; e.g., shading, nonuniform background, changes in illumination

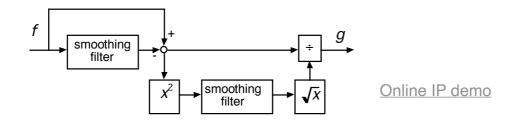
Normalization over a sliding window

$$g[\mathbf{k}] = a\left(\frac{f[\mathbf{k}] - \tilde{\mu}[\mathbf{k}]}{\tilde{\sigma}[\mathbf{k}]}\right) + b$$



Weighted averaging: $\tilde{\mu}[m{k}_0] = \sum_{m{k}} w[m{k}] f[m{k} - m{k}_0]$ with $\sum_{m{k}} w[m{k}] = 1$

with
$$\sum_{k} w[k] = 1$$



Smoothing filter implements a local averaging window ⇒ Estimation of local statistics

5-7 Unser: Image processing

Combining images

- Averaging for noise reduction
 - Independent noisy observations: $f_i[k] = s[k] + n_i[k]$ (i = 1, ..., N)
 - Hypotheses

(a)
$$\mathbb{E}\left\{f_i[\mathbf{k}]\right\} = s[k,l] \quad \Rightarrow \quad \mathbb{E}\left\{n_i[\mathbf{k}]\right\} = 0$$

(b) i.i.d. noise at each location $k \Rightarrow \operatorname{Var} \{f_i[k]\} = \operatorname{Var} \{n_i[k]\} = \sigma^2[k]$

Noise reduction: $\bar{f}[k] = \frac{1}{N} \sum_{i=1}^{N} f_i[k]$

Mean: $\mathbb{E}\left\{\bar{f}[k]\right\} = s[k]$

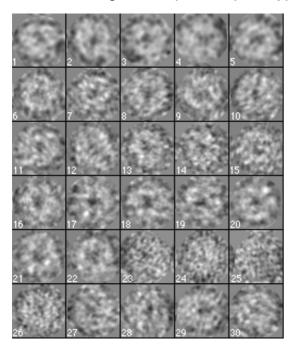
Variance:
$$\operatorname{Var}\left\{\bar{f}[\boldsymbol{k}]\right\} = \frac{1}{N^2} \sum_{i=1}^{N} \operatorname{Var}\left\{f_i[\boldsymbol{k}]\right\} = \frac{\sigma^2[\boldsymbol{k}]}{N}$$

Signal-to-noise ratio up by \sqrt{N}

Central-limit Theorem: $\bar{f}[k] \sim \text{Gauss}(s[k], \sigma^2/N)$

Example: noise reduction

Correlation-aligned Herpes Simplex Type 2 Capsomers (electron micrographs)



Result of averaging:

Practical problems

- Registration
- Detection of outliers

5-9 Unser: Image processing

Spatial averaging: smoothing

Linear smoothers = Lowpass filters

with
$$\sum i$$

Finite impulse response (FIR)

Moving average

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} \qquad \begin{bmatrix} 0 & \frac{1}{8} & 0 \\ \frac{1}{8} & \frac{1}{2} & \frac{1}{8} \\ 0 & \frac{1}{8} & 0 \end{bmatrix}$$

- Infinite impulse response (IIR)
 - Symmetric exponential
 - Gaussian filter

- Main uses
 - Image simplification
 - Noise reduction (high frequency)
 - Estimation of local statistics (mean, energy)
 - Multiscale processing

- Limitations
 - Blurring of edges and image details
 - nonlinear operators

Spatial averaging: median filter

 $g[\mathbf{k}] = \text{Median} \{ f[\mathbf{k} - \mathbf{i}], \mathbf{i} \in W \}$

 ${\it W}$ neighborhood:

5×5 median filtered

Advantages

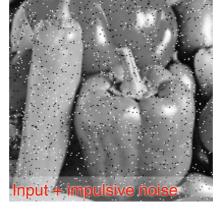
- Tends to preserve contours better than linear smoothers
- Good for impulsive or heavy-tailed (non-Gaussian) noise (robust estimation)

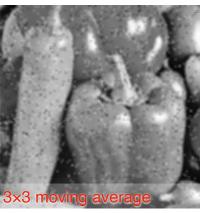
Limitations

- Computationally costly for large size of neighborhood
- Breaks down when there is a majority of noisy pixels

Unser: Image processing 5-11

Impulsive noise reduction experiment





5.2 MATCHING AND DETECTION

- Template matching
 - Problem definition
 - Correlation
- Matched-filter detection
- Application areas
 - Object detection
 - Automated inspection
 - Data fusion
 - Registration
 - Motion compensation

Unser: Image processing 5-13

Template matching

Problem definition

Reference pattern, target, or template(s): $f_r[k], k \in \Omega_r$

Test image: $f[k], k \in \Omega_f$

Common support: $\Omega = \Omega_f \cap \Omega_r$

How do we decide that f and f_r are similar?

Given a collection of templates f_i (*e.g.*, shifted version of our reference), how do we select the best match?

Correlation measures

■ Basic correlation (or $\ell_2(\Omega)$ -inner product)

$$\langle f, f_r \rangle_{\ell_2} = \sum_{\mathbf{k} \in \Omega} f[\mathbf{k}] f_r[\mathbf{k}]$$

Relation with Euclidean distance

$$||f - f_r||_{\ell_2}^2 = \langle f - f_r, f - f_r \rangle_{\ell_2} = ||f||_{\ell_2}^2 + ||f_r||_{\ell_2}^2 - 2 \langle f_r, f \rangle_{\ell_2}$$

Given a collection of templates with $\|f_r\|^2 pprox \mathrm{const}$

$$\|f-f_r\|^2$$
 is minimum $\Leftrightarrow \langle f_r,f
angle$ is maximum

Unser: Image processing 5-15

Correlation measures (Cont'd)

Centered correlation

Motivation: invariance to a constant intensity offset b with $f=f_0+b$

$$\langle f - \bar{f}, f_r - \bar{f}_r \rangle_{\ell_2} = \sum_{\mathbf{k} \in \Omega} (f[\mathbf{k}] - \bar{f}) (f_r[\mathbf{k}] - \bar{f}_r)$$

where the average value is $\bar{f} = \frac{1}{\#\Omega} \sum_{{m k} \in \Omega} f[{m k}]$

Note:
$$\left\langle f-\bar{f},f_r-\bar{f}_r \right\rangle_{\ell_2}=\left\langle f-\bar{f},f_r \right\rangle_{\ell_2}=\left\langle f,f_r-\bar{f}_r \right\rangle_{\ell_2}$$

Normalized correlation coefficient

Motivation: invariance to linear amplitude scaling $f = a f_0 + b$

$$-1\leqslant \rho\{f,f_r\} = \frac{\left\langle f - \bar{f}, f_r - \bar{f}_r \right\rangle_{\ell_2}}{\|f - \bar{f}\|_{\ell_2} \|f_r - \bar{f}_r\|_{\ell_2}} \leqslant 1$$

Schwarz inequality: $\langle f, g \rangle \leqslant \|f\| \ \|g\|$

Matched-filter detection

■ Measurement model (signal + noise): $f[k] = s[k - k_0] + n[k]$

s: known deterministic signal or template

n: additive white noise with zero mean and variance σ^2

 k_0 : unknown signal location

$$\mathbb{E}\left\{f[\boldsymbol{k}]\right\} = s[\boldsymbol{k} - \boldsymbol{k}_0]$$

Correlation-like detector

$$g[k] = (h * f) [k]$$

$$= \sum_{\substack{k_1 \in \mathbb{Z}^d}} h[k_1] f[k - k_1] = \sum_{\substack{k_2 \in \mathbb{Z}^d}} w[k_2] f[k + k_2]$$
convolution correlation

where $w[\mathbf{k}] = h[-\mathbf{k}]$

Unser: Image processing 5-17

Optimal matched filter

lacksquare Optimum detector: maximum SNR at $m{k}=m{k}_0$

Solution: w[k] = s[k] (matched filter)

Proof:

Signal estimate at ${m k}={m k}_0$

$$\mathbb{E}\{g[\boldsymbol{k}_0]\} = \sum_{\boldsymbol{k}_1 \in \mathbb{Z}} w[\boldsymbol{k}_1] s[\boldsymbol{k}_0 - \boldsymbol{k}_0 + \boldsymbol{k}_1] = \langle w, s \rangle_{\ell_2}$$

Residual-noise variance

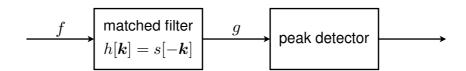
$$\operatorname{Var}\{g[\boldsymbol{k}]\} = \sum_{\boldsymbol{k}_1 \in \mathbb{Z}} w^2[\boldsymbol{k}_1] \operatorname{Var}\{n[\boldsymbol{k} + \boldsymbol{k}_1]\} = \|w\|_{\ell_2}^2 \sigma^2$$

Signal-to-noise ratio at
$$m{k} = m{k}_0$$
: SNR $= rac{\langle s,w
angle_{\ell_2}}{\|w\|_{\ell_2}} \sigma$

Cauchy-Schwarz inequality

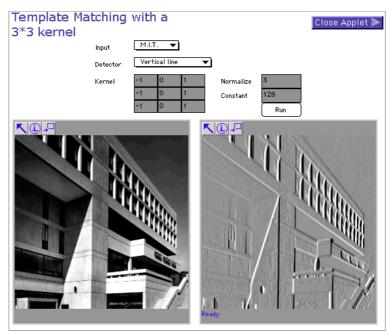
$$\langle s,w\rangle_{\ell_2}\leqslant \|s\|_{\ell_2}\ \|w\|_{\ell_2}\qquad \text{with equality iff. }w[\pmb{k}]=\lambda\,s[\pmb{k}]$$

Pattern detection by template matching



Application

Line detector

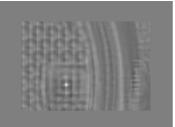


Unser: Image processing 5-19

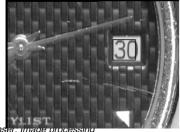
Template matching: example

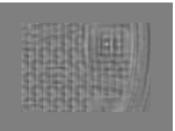
Reference template (33×31 pixels)

$$x = 149, y = 95, \rho = 100\%$$



$$x = 98, y = 123, \rho = 88\%$$





$$x = 58, y = 61, \rho = 33\%$$

5-20

Matched filtering: extension to colored noise

Make the noise white and you are back to the previous problem!

■ Prewhitening filter: $\frac{1}{\sqrt{\Phi_n(e^{j\omega})}}$

$$\Phi_f(e^{j\omega}) \xrightarrow{H(e^{j\omega})} \xrightarrow{h * f} |H(e^{j\omega})|^2 \Phi_f(e^{j\omega})$$

where $\Phi_n(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})$ is the spectral power density of the noise

$$\qquad \text{Prewhitened template:} \quad P(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}}) = \frac{S(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}{\sqrt{\Phi_n(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}}$$

$$\Rightarrow \text{Prewhitened matched filter:} \quad H(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}}) = \frac{P^*(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}{\sqrt{\Phi_n(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}} = \frac{S^*(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}{\Phi_n(\mathrm{e}^{\mathrm{j}\boldsymbol{\omega}})}$$

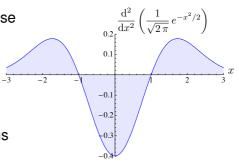
Example

Detection of a Gaussian blob φ in isotropic $1/\left\|\boldsymbol{\omega}\right\|^2$ noise

Optimal detector (Mexican-hat filter)

$$\Delta \varphi(\boldsymbol{x}) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad -\|\boldsymbol{\omega}\|^2 \ \hat{\varphi}(\boldsymbol{\omega})$$

Application: detection of $\mu \mathrm{CA}^{++}$ in digital mammograms



Unser: Image processing 5-21

5.3 FEATURE EXTRACTION

Edge detection

Edges are important clues for the interpretation of images; they are essential to object recognition

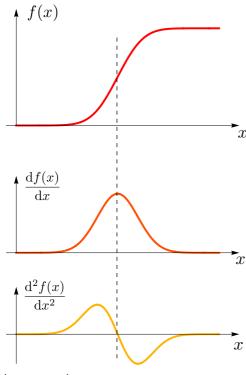
- Edges: continuous formulation
- Gradient-based edge detection

Texture analysis

- What is texture
- Filterbank analysis
- Towards texture segmentation

Edges: continuous-domain formulation

Edge point: location of abrupt change in an image



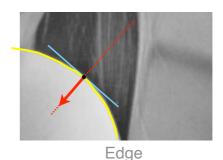


Image value at location x: f(x)

Normal vector: $\ \ \, oldsymbol{n} = rac{oldsymbol{
abla} f(oldsymbol{x})}{\|oldsymbol{
abla} f(oldsymbol{x})\|}$

⇒ direction of maximum change

Unser: Image processing

5-23

Gradient and directional derivatives

- Gradient of f at $\boldsymbol{x} = (x_1, x_2)$: $\nabla f(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \frac{\partial f(\boldsymbol{x})}{\partial x_2}\right) = (f_1(\boldsymbol{x}), f_2(\boldsymbol{x}))$
- Directional derivative of f along the unit vector $\mathbf{u}_{\theta} = (\cos \theta, \sin \theta)$

$$D_{u_{\theta}} f(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon u_{\theta}) - f(x)}{\epsilon}$$
$$= f_1(x) \cos \theta + f_2(x) \sin \theta$$

Taylor-series argument :
$$f(\boldsymbol{x} + \epsilon \boldsymbol{u}) = \\ f(\boldsymbol{x}) + \epsilon \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} f(\boldsymbol{x}) + \mathcal{O}(\epsilon^2)$$

lacktriangle Generalization to d-dimensions: derivative of f along the vector $oldsymbol{u}$

$$D_{\boldsymbol{u}}f(\boldsymbol{x}) = \lim_{\epsilon \to 0} \left(\frac{f(\boldsymbol{x} + \epsilon \, \boldsymbol{u}) - f(\boldsymbol{x})}{\epsilon \, \|\boldsymbol{u}\|} \right) = \left\langle \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{\nabla} f(\boldsymbol{x}) \right\rangle$$

Maximum of the directional derivative (Cauchy-Schwartz)

$$\max_{\theta} \{ \mathbf{D}_{\boldsymbol{u}_{\theta}} f \} = \mathbf{D}_{\boldsymbol{n}} f = \| \boldsymbol{\nabla} f \| = \sqrt{f_1^2 + f_2^2}$$

Direction of maximum deviation

$$\theta^* = \angle(\mathbf{\nabla} f) = \arctan(\frac{f_2}{f_1}) + k \, \pi, \, k \in \mathbb{Z} \quad \ (\bot \text{ to edge})$$

General criteria for edge detection

- Maximum of the gradient
- Zero-crossings of the second-order (directional) derivative
- Combination of both

Remarks

- Gradient magnitude and Laplacian are rotationally invariant while gradient vectors and directional second-order derivatives are not
- Derivatives are usually estimated on a smoothed version of the image to improve robustness and/or reduce the effect of noise or irrelevant details
- ⇒ Multiscale approaches

5-25

Gradient-based edge detection

Discretized gradient operators

Horizontal derivative: $g_1[\mathbf{k}] = (h_1 * f)[\mathbf{k}]$

Vertical derivative: $g_2[\mathbf{k}] = (h_2 * f)[\mathbf{k}]$

$$g[k_1, k_2] = \sqrt{g_1^2[k_1, k_2] + g_2^2[k_1, k_2]}$$

$$\theta_g[k_1, k_2] = \arctan(\frac{g_2[k_1, k_2]}{g_1[k_1, k_2]}) + n \pi, n \in \mathbb{Z}$$

Centered finite differences

$$\partial_x pprox \boxed{rac{1}{2} \quad 0 \quad -rac{1}{2}}$$

$$\partial_y \approx \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

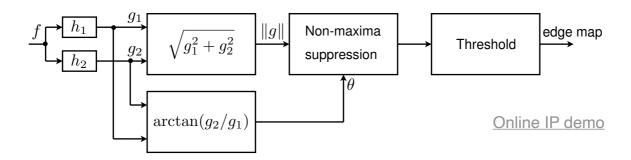
■ Threshold-based edge detection

$$\mathrm{edge}[k_1,k_2] = \left\{ \begin{array}{ll} 1 & g[k_1,k_2] \geqslant T_1 \\ 0 & \mathrm{otherwise} \end{array} \right.$$

Canny's edge detection algorithm

Refinements

- $\ \blacksquare$ Non-maxima suppression: based on local search in the direction θ_g
- Hysteresis threshold: contour segments above T_1 (high threshold) are grown such as to include all connected points with $g[k_1,k_2] \geqslant T_0$ (low threshold)

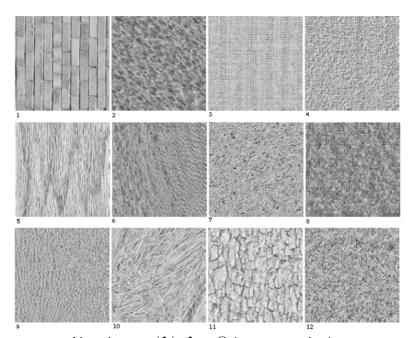


5-27

What is texture?

What is meant by texture

- Local order or pattern
- Neighborhood property
- · Invariance by translation
- Homogeneity
- Subjective notion related to visual perception



Notation: $x|\mathbf{k}|, \mathbf{k} \in \Omega$ (texture region)

Gaussian texture model

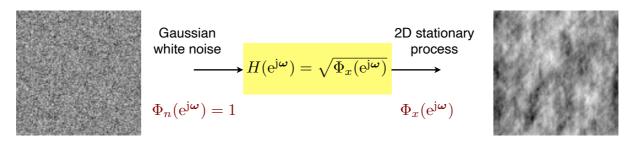
Power spectral density function

$$\Phi_x(\mathrm{e}^{\mathrm{j}m{\omega}}) = \sum_{m{k}\in\mathbb{Z}^2} a_x[m{k}]\mathrm{e}^{-\mathrm{j}\langlem{k},m{\omega}
angle}$$
 (Wiener-Khintchine relation) where $a_x[m{k}] = \mathbb{E}\{x[\cdot]x[\cdot+m{k}]\}$ (autocorrelation)

LSI system

$$x[\mathbf{k}] = (h * n)[\mathbf{k}] \qquad \longleftrightarrow \qquad \Phi_x(e^{j\boldsymbol{\omega}}) = |H(e^{j\boldsymbol{\omega}})|^2 \cdot \Phi_n(e^{j\boldsymbol{\omega}})$$

Gaussian texture generation model

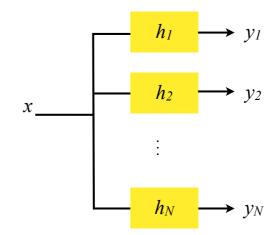


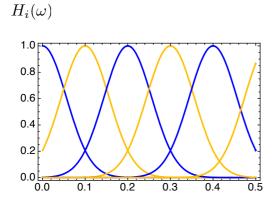
Unser: Image processing 5-29

Filterbank analysis

Multichannel filterbank

$$y_i[\mathbf{k}] = (h_i * x)[\mathbf{k}], \quad i = 1, \dots, N$$





 $\frac{\omega}{2\pi}$

Filterbank analysis (Cont'd)

Channel statistics

Histograms: $P_i(a) = \text{Prob}\{y_i = a\}$

Moments: $m_{i,p} = \mathbb{E}\left\{|y_i|^p\right\} = \sum_a |a|^p P_i(a)$

Texture energies: $\sigma_i^2 = \mathrm{Var}\{y_i\} = \left\{ \begin{array}{ll} m_{1,2} - \mu^2, & i = 1 \quad \text{(lowpass)} \\ m_{i,2}, & i \neq 1 \quad \text{(highpass)} \end{array} \right.$

lacksquare Spatial estimators over a texture region Ω

$$\hat{P}_i(a) = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} \delta_{y_i[\mathbf{k}] - a}$$

$$\hat{m}_{i,p} = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} |y_i[\mathbf{k}]|^p$$

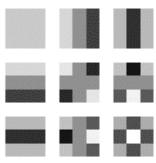
Unser: Image processing 5-31

Pratical issues

- Choice of the filterbank
 - Local linear transforms (Unser 1986)

 \Rightarrow Sliding 3×3 DCT or DST

Motivation: fast algorithms, good approximation of KLT



Filter masks for the 3x3 DCT

Gabor filters (Fogel 1989)

Motivation: similarity with visual system

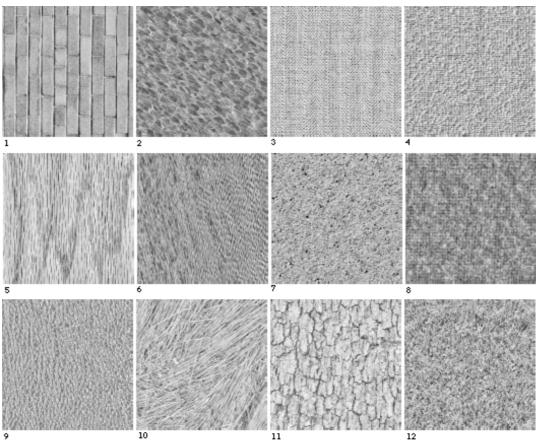
■ Wavelet filterbanks (with or without decimation) (Unser 1995)

Motivation: fast algorithm; multiscale analysis

Convolutional neural networks

Motivation: the "learning revolution" = data-driven design

Texture classification



Unser: Image processing 5-33

Texture-classification results

Test data

■ 12 Brodatz textures

Equalized histograms (32 levels)

 \blacksquare (32×32) non-overlapping regions

Training and classification

Maximum-likelihood estimation of

 $(\mathbf{m}_i, \mathbf{C}_i)$ for $i \in \{1, \dots, K\}$

Leave-one-out method

■ Confusion matrix (line: true class; column: assigned class)

	1	2	3	4	5	6	7	8	9	10	11	12
1	64	0	0	0	0	0	0	0	0	0	0	0
2	0	64	0	0	0	0	0	0	0	0	0	0
3	0	0	64	0	0	0	0	0	0	0	0	0
4	0	0	0	64	0	0	0	0	0	0	0	0
5	0	0	0	0	64	0	0	0	0	0	0	0
6	0	0	0	0	0	64	0	0	0	0	0	0
7	0	0	0	0	0	0	62	0	0	0	0	2
8	0	0	0	0	0	0	0	64	0	0	0	0
9	0	0	0	0	0	0	0	0	64	0	0	0
10	0	0	0	0	0	0	0	0	0	64	0	0
11	0	0	0	0	0	0	0	1	0	0	63	0
12	0	0	0	0	0	0	5	0	0	1	0	58

Number of features: 9 texture energies (3x3 DCT)

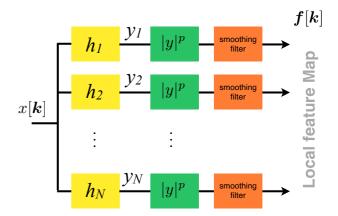
Number of errors: 9 out of 768

Total score: 98.83%

Towards texture segmentation

- lacktriangle Basic principle

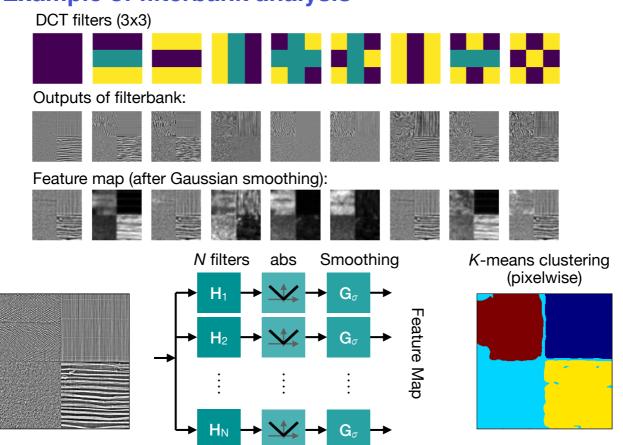
 Define a local feature map f[k] associated to a window centered on current pixel
- Efficient multichannel implementation
 Smoothing filter implementing a local-averaging window
 - ⇒ Estimation of local statistics (moments)
 Gaussian smoother
 - isotropic weighting window
 - optimal space/frequency localization



- Additional processing steps
 - Feature reduction; e.g., Karhunen-Loève transform
 - Classification or clustering

Unser: Image processing 5-35

Example of filterbank analysis



5.4 IMAGE SEGMENTATION

- Segmentation: art or science?
- Amplitude thresholding
 - Variational thresholding
 - Statistical thresholding
- Binary segmentation techniques

Unser: Image processing 5-37

Segmentation problem

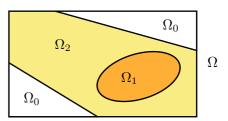
Definition

Image f[k], with $k \in \Omega$

Image segmentation: Find a partition of the support Ω of the image f, with

$$\Omega = \bigcup_i \, \Omega_i ext{ with } \Omega_i \cap \Omega_j = \emptyset ext{ for } i
eq j$$

such that the regions Ω_i satisfy some homogeneity (and connectivity) criterion.



The total number of regions I is not necessarily known

- Three main approaches
 - Pixel classification
 - Region-based segmentation
 - Boundary-based segmentation ⇒ Edge detection

Segmentation: art or science?

Problem: lack of a universal definition of homogeneity

→ many application-specific approaches

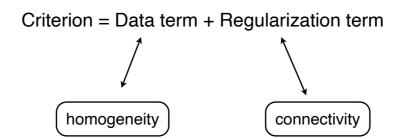
- Approaches for specifying homogeneity
 - Empirical (e.g., similar graylevels; feature maps)
 - Statistical, based on some a priori model (e.g., constant mean + additive white noise)
- Approaches for enforcing connectivity (if required)
 - Prior information about object size or shape
 - Joint probability model for class labels
 - Contour length

Unser: Image processing 5-39

Segmentation as an optimization problem

Variational vs. Markov-random-field approaches

Principle: maximize the quality of any candidate segmentation, as measured by a functional that incorporates all problem-specific knowledge



Amplitude thresholding

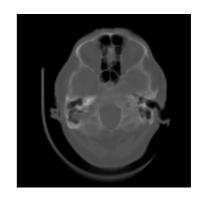
Empirical approach

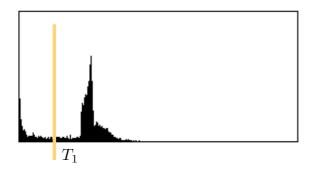
Based on the histogram, select a collection of thresholds

$$T_0 < \cdots < T_i < \cdots < T_I$$

and use the following rule to assign regions:

$$(k,l) \in \Omega_i$$
 for $T_i \leqslant f[k,l] < T_{i+1}$





Unser: Image processing 5-41

Variational thresholding

Principle: minimize an appropriate goodness-of-fit criterion

Variational formulation

Constant-mean model: $f[{m k}] = \mu_i$, ${m k} \in \Omega_i$

Find μ_i and Ω_i s. t. $\sum_i \sum_{\pmb{k} \in \Omega_i} \left(f[\pmb{k}] - \mu_i\right)^2$ is minimum

 \Rightarrow Same problem as **Max-Lloyd quantization** (K-means)

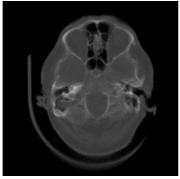
Simple iterative two-step optimization scheme

- 1. Given Ω_i , compute region means μ_i
- 2. Given μ_i , compute optimal partitions $\Omega_1, \ldots, \Omega_I \ \Rightarrow \ T_{i+1} = \frac{1}{2} \ (\mu_i + \mu_{i+1})$

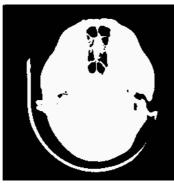
Note: all computations can be done from the histogram

Segmentation by minimum-error quantization

Search for the "optimal" threshold to segment images



(see Chap 2)





Minimum-error solution:

K=2

K=4

Unser: Image processing

5-43

Statistical thresholding

Principle: Find the most "likely" segmentation model

■ Statistical formulation with labels $x[k] = i \Leftrightarrow k \in \Omega_i$

Standard "statistics" notation

 $X = \{x[{\pmb k}]: {\pmb k} \in \Omega\}$: unknown labels

 $Y = \{f[k] : k \in \Omega\}$: observed data = image or feature map to segment

 $oldsymbol{f}:\Omega o\mathbb{R}^N$ (scalar=graylevel, RGB or feature map)

lacktriangle Class-conditional probability at location $m{k}$, assuming i.i.d. Gaussian feature channels

$$p(\mathbf{f}|x=i) = \prod_{n=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(f_n - \mu_{i,n})^2}{2\sigma^2}) = \frac{1}{(\sigma\sqrt{2\pi})^N} \exp(-\frac{\|\mathbf{f} - \boldsymbol{\mu}_i\|^2}{2\sigma^2})$$

Feature vector: $oldsymbol{f} = oldsymbol{f}[oldsymbol{k}] = (f_n) \in \mathbb{R}^N$

Parameters: $\sigma \in \mathbb{R}$, $oldsymbol{\mu}_1, \dots, oldsymbol{\mu}_I \in \mathbb{R}^N$

Statistical thresholding (Cont'd)

- Region labels: $x[\mathbf{k}] = i \Leftrightarrow \mathbf{k} \in \Omega_i$
- Joint probability density function (i.i.d. Gaussian components)

$$p(Y|X; \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_I, \sigma) \propto \prod_{\boldsymbol{k} \in \Omega} \exp(-\frac{\|\boldsymbol{f}[\boldsymbol{k}] - \boldsymbol{\mu}_{x[\boldsymbol{k}]}\|^2}{2\sigma^2})$$

Log-likelihood

$$\log p(Y|X; \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_I, \sigma) = C_0 + \sum_{\boldsymbol{k} \in \Omega} -\frac{\|\boldsymbol{f}[\boldsymbol{k}] - \boldsymbol{\mu}_{x[\boldsymbol{k}]}\|^2}{2\sigma^2}$$

Maximum-likelihood estimate

Find x[k] and $oldsymbol{\mu}_1,\dots,oldsymbol{\mu}_I\in\mathbb{R}^N$ such that

$$-\sum_{\pmb k\in\Omega}\|\pmb f[\pmb k]-\pmb \mu_{x[\pmb k]}\|^2=-\sum_i\sum_{\pmb k\in\Omega_i}\|\pmb f[\pmb k]-\pmb \mu_i\|^2 \text{ is maximum}$$

 \Rightarrow Equivalent to minimum-error vector (Max-Lloyd) quantization (*I*-means)

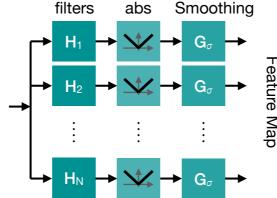
Unser: Image processing 5-45

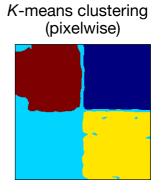
Texture segmentation by vector quantization

(see Section 5.3)

Outputs of filterbank (3x3 DCT)

Feature map (after Gaussian smoothing):





Binary-segmentation techniques

Objects or regions: set of points in \mathbb{Z}^2 (bitmap)

lacksquare Distance measures with $oldsymbol{a},oldsymbol{b}\in\mathbb{Z}^2$

City-block distance: $D_4({m a},{m b}) = |a_1 - b_1| + |a_2 - b_2|$

Chessboard distance: $D_8(\mathbf{a}, \mathbf{b}) = \max(|a_1 - b_1|, |a_2 - b_2|)$

distance $\Rightarrow \varepsilon$ -neighborhood $N(\mathbf{a})$ of a point \mathbf{a} (with $D(\boldsymbol{a},\boldsymbol{b})\leqslant \varepsilon$)

Connectivity

4-connect neighborhood

$$N_4(\boldsymbol{a}) = \{ \boldsymbol{b} | \boldsymbol{b} \in \mathbb{Z}^2, D_4(\boldsymbol{a}, \boldsymbol{b}) \leqslant 1 \}$$

8-connect neighborhood

$$N_8(\boldsymbol{a}) = \{ \boldsymbol{b} | \boldsymbol{b} \in \mathbb{Z}^2, D_8(\boldsymbol{a}, \boldsymbol{b}) \leqslant 1 \}$$

Unser: Image processing

5-47

Binary-segmentation techniques (Cont'd)

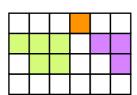
Objects or regions: set of points in \mathbb{Z}^2 (bitmap)

Path

List $\{a_i:i\in[1\dots N]\}$ of N connected pixels such that $a_i\in N(a_{i-1})$

Connected components

Maximum set of connected pixels



Binary-segmentation techniques (Cont'd)

Background/foreground connectivity ambiguity

 ${\cal B}$ and ${\cal C}$ are separated by an 8-connected contour; yet they are themselves 8-connected

Solution

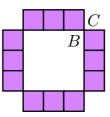
8-connectivity for foreground

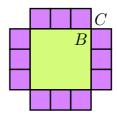
4-connectivity for backgroud

OR

4-connectivity for foreground

8-connectivity for backgroud





In 3-D: 6-connected vs. 18-connected vs. 26-connected

Unser: Image processing 5-49

Connected-component labeling

Connected-component labeling (blob coloring algorithm)

 \mathbb{F} : foreground

$$\mathbb{Z}^2=\mathbb{F}\cup\mathbb{B};\mathbb{F}\cap\mathbb{B}=\emptyset$$

 \mathbb{B} : background

 $4\mbox{-}\mathrm{connected}$ scanning window:

Start with color equivalences $\mathbb{E}=\emptyset$ and initial color i=1

Scan image from left to right, then top to bottom if $oldsymbol{k} \in \mathbb{F}$ then {

$$\text{if } (\boldsymbol{k}_U \in \mathbb{B} \wedge \boldsymbol{k}_L \in \mathbb{B}) \text{ then } \{\textit{color}(\boldsymbol{k}) = i \text{; } \mathbb{E} = \mathbb{E} \cup \{(i,i)\} \text{; } i = i+1 \text{;} \}$$

if
$$(m{k}_U \in \mathbb{B} \wedge m{k}_L \in \mathbb{F})$$
 then $color(m{k}) = color(m{k}_L)$;

if $(k_U \in \mathbb{F} \land k_L \in \mathbb{B})$ then $color(k) = color(k_U)$;

if
$$(oldsymbol{k}_U \in \mathbb{F} \wedge oldsymbol{k}_L \in \mathbb{F})$$
 then $\{$

$$extit{color}(oldsymbol{k}) = extit{color}(oldsymbol{k}_L); \ \mathbb{E} = \mathbb{E} \cup \{(extit{color}(oldsymbol{k}_U), extit{color}(oldsymbol{k}_L))\};\}$$

}

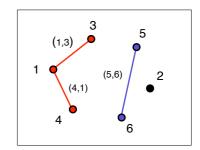
Blob coloring (Cont'd)

■ Post-processing: Resolve color equivalences

```
For j=1 to i do \{ \mathbb{U}=getEquivalentColors(j,\mathbb{E}); \ \forall u\in\mathbb{U}: equivalenceTable[u]=j; \} For all pixels k set color(k)=equivalenceTable[color(k)];
```

Graph representation of color-equivalence list

$$\mathbb{E} = \{(1,1), (2,2), (3,3), (1,3), (4,4), (4,1), (5,5), (6,6), (5,6)\}$$



Main applications

- Finding image regions following an edge detection
- Counting objets (cytology)
- lacksquare Modification for *region growing*: $m{k}, m{k}_U \in \mathbb{F} \Leftrightarrow |f(m{k}) f(m{k}_U)| < T$